Новые тенденции в катализе органических реакций

- Нанокатализ
- Катализ кислотами Бренстеда
- Катализ кислотами Льюиса
- Органокатализ
- Катализ солями непереходных металлов

И.П. Белецкая 15-19.05.2017, г. Иркутск

Cross-coupling reactions

R-M + Ar(Het), vinyl, alkynyl -X — cat R-Ar(Het), vinyl, alkynyl

Kumada, Corriu (1972)

$$M = MgX (Tamao - Kumada)$$

= SnR₃ (Migita - Kosugi - Stille)
= ZnX (Negishi)
= B(OH)₂ (Suzuki - Miyaura)
= SiR₃ (Hiyama)

Sonogashira - Hagihara

$$R-Hal(OTf) + R' = \frac{[Pd], Cu}{base} R = R'$$

$$R=Ar, Vinyl; R'=Ar, Alk$$

Cross-coupling reactions

Mizoroki - Heck reaction

The Nobel Prize in Chemistry 2010

Richard F. Heck

Ei-ichi Negishi

Akira Suzuki

for palladium-catalyzed cross couplings in organic synthesis

Pd-catalyzed reactions

Catalytic cycle of Pd-catalyzed reactions

Suzuki Reaction

X: Br, I; Y: H, p-F, p-(4-n-amylcyclohexyl); Z: m-, p-OH; o-, m-, p-COOH

Izv. Akad. Nauk SSSR, Ser. Khim., 1989, 2394

Reaction in microemulsion

Z: Alk, NO₂, OR, COOR, CN, Hal, etc.; X = COOR, Ar, 4-Py **Microemulsion media:** surfactant (anionic, cationic, or non-ionic) – co-surfactant (alkanol C₂-C₅, or alkyl ethers of mono or diethyleneglycol) – water (molar ratio 1:5-6:200)

Heck reaction

Surfactant $C_{17}H_{33}CO_2K$ PdCl₂ (0.01 mol%), Yield 90%

Cheprakov A.V. Adv. Synth. Catal., 2015, 357, 417

Suzuki reaction

Heck reaction

Carbonylation

Catalyst recycling (ultrafiltration)

O. Ganina, Reac. Kinet. Mech. Cat., 2010, 99, 1547

Heck reaction

E. Tarasenko, J. Organomet. Chem., 2007, 692, 4402

Reactions of n-butyl acrylate with p-acetylphenyl bromide

TEM images of the palladium nanoparticles

E. Tarasenko, J.Organomet.Chem. 2007, 692, 4402

New recyclable catalyst for the cyanation of arylbromides

A. Selivanova, Russ. J. Org. Chem., 2010, 46, 157

Alkoxycarbonylation of aryl iodides catalyzed by polymer-supported palladium

PVI-PVC = poly(N-vinylimidazole-co-N-vinylcaprolactam)

Entry	Catalyst	Base	Temp, °C	Pressure of CO, atm	Yield, %		
		Influence of	base and catal	yst			
1	H ₂ PdCl ₄	КОН	50	1	11		
2	H_2PdCl_4	K ₂ CO ₃	50	1	18		
3	H_2PdCl_4	Et ₃ N	50	1	32		
4	K ₂ PdCl ₄	КОН	50	1	45		
5	K ₂ PdCl ₄	K ₂ CO ₃	50	1	53		
6	K ₂ PdCl ₄	Et ₃ N	50	1	85		
		Influence	of CO pressure	!			
7	K ₂ PdCl ₄	Et ₃ N	50	1	70		
8	K ₂ PdCl ₄	Et ₃ N	50	5	48		
9	K ₂ PdCl ₄	Et ₃ N	50	30	41		
Influence of temperature							
10	K ₂ PdCl ₄	Et₃N	25	1	8		
11	K ₂ PdCl ₄	Et ₃ N	40	1	63		
12	K ₂ PdCl ₄	Et₃N	55	1	92 🗲		

O. Ganina, Reac. Kinet. Mech. Cat., 2010, 99, 1547

Suzuki reaction

Ph (95%), p-Tol (80%), p-MeOPh (89%), m-CF₃Ph (83%),p-FPh (91%),

p-ClPh	(90%),	Br	(73%	b) , ^{Br}	Br	(62%	6+149	% diai	rylatio	n + 6%	o mon	0)
	Run	1	2	3	4	5	6	7	8			
	Yield, %	>99	92	99	99	>99	>99	>99	98			

Selivanova A.V., ChemPlusChem, 2014, 79, 1278

Scope of cross-coupling reactions

Transition metal catalysis made nucleophilic substitution at sp² and sp carbon atoms a routine procedure

Copper

Chemical copper means:

- 1. Electrical engineering, telecommunications
- 2. Automotive
- 3. Plumbing: tube, pipe and fittings
- 4. Jewelry, coins
- 5. Chemistry: catalysts and reagents
- 6. Copper alloys for marine applications and more ...

The Cyprian "cyprium" meaning "bronze"

5º CENTENARIO DE N. COPERNICO

Copper catalyzed arylation of polyamines and oxadiamines

Eur. J. Org. Chem., 2011, 31, 6240

Catalytic approach to steroids bearing heterocyclic moieties

Kotovshchikov Yu.N., Latyshev G.V., Eur. J. Org. Chem., 2013, 7823; Org. Bio. Chem., 2015, 13, 5542

Ni- and Cu-catalyzed C-P bond formation

Org. Lett, 2003, 5, 4309,

Immobilization of heteroleptic copper(I) complexes on TiO₂

Sonogashira-type reaction

Inorganica Chimica Acta, 2015, <u>431</u>, 297–301

Sonogashira-type reaction

TiO₂(Cu(3-Pphen)) <u>5 mol%</u> 16 h, Cs₂CO₃, PPh₃ toluene, 110 °C

99%, 5 cycles, without loss of activity

borylcupration reaction

phosphorylation reaction

Supported copper nanoparticles in cross-coupling

Sonogashira reaction

	≣ +	I—————————————————————————————————————	$\frac{5 \text{ mol\% CuNPs/Support}}{\text{DMF, K}_2\text{CO}_3, 120 \text{ °C}} \qquad \bigcirc $
Entry	Catalyst	Conversion (%)	Yield, % 99
1	Cu(0)	0	
2	Cu ₂ O	8	80 56
3	CuO	0	60 45
4	CuCl	5	40 19
5	CuCl ₂	8	20
6	CuBr	0	Zeolite TiO, MK-10 C
7	Cul	4	
8	CuOAc	9	
9	Cu(OAc) ₂	7	Yield, %9999999999
10	CuOTf	50 ^c	
11	Cu(OTf) ₂	67 ^c	80
12	CuBr·SMe ₂	4	60
13	CuNPs/ZY	99	40
			20

TEM micrograph of **CuNPs/ZY** d(CuNPs = 2.0±0,9 nm)

0

1 cycle 2 cycle 3 cycle 4 cycle

Supported copper nanoparticles in cross-coupling

Entry	Catalyst	Conversion (%)
1	Cu(0)	25
2	Cu ₂ O	23
3	CuO	32
4	CuCl	54
5	CuCl ₂	64
6	CuBr	38
7	Cul	50
8	CuOAc	63
9	Cu(OAc) ₂	91
10	CuOTf	77
11	Cu(OTf) ₂	82
12	CuBr·SMe ₂	77
13	CuNPs/ZY	94

Supported copper nanoparticles in cross-coupling

CN

Arylation of different azoles with supported CuNPs

Entry	Catalyst	Conversion (%)
1	Cu(0)	28
2	Cu ₂ O	74
3	CuO	78
4	CuCl	44
5	CuCl ₂	46
6	CuBr	18
7	Cul	62
8	CuOAc	25
9	Cu(OAc) ₂	52
10	CuOTf	78
11	Cu(OTf) ₂	67
12	CuBr·SMe ₂	55
13	CuNPs/TiO ₂	99

Каталитический цикл

Cu(0) NPs /Al₂O₃ в катализе реакции карбоксилирования терминальных алкинов

Catalysis Today, 2016 (submitted)

Click cholaphanes

Linear conjuncted Porphyrin Triad Synthesis via "click" reaction

Polevaya Y.P., J. Porphyrins Phthalocyanines, 2014, 18, 20-34

Star-shaped Porphyrin Triad

 Энварь - март 2013 Tox 6 Ne1

VCIES

Burrycz noczasuów akagetwsy Wpiwe Response Senetikow ISUCT Publishing

Macroheterocycles, **2012**, *5*, 302

This issue is dedicated to Academician Irina Petrovna Beletskaya on the occasion of her Anniversary

Реакции Михаэля с гетерогенным катализатором

Реакция индола и бензалиденмалоната

Nº	Катализатор	Растворитель	Температура (°C)	Выход (%)	ee (%)
1	PEG-iPr-Box*Cu(OTf) ₂	EtOH-THF (1:1)	0°C	0	-
2	PEG-iPr-Box*Cu(OTf) ₂	EtOH-THF (1:1)	20°C	0	-
3	PEG-iPr-Box*Cu(OTf) ₂	H ₂ O	20°C	0	-
4	PEG-Latex-iPr-Box*Cu(OTf) ₂	EtOH	-30°C	86	64
5	Ps-iPr-Box-Cu(OTf) ₂	EtOH	0°C	74	87
6	Ps-iPr-Box-Cu(OTf) ₂	DCM	-30°C	91	87
7	Ps-iPr-Box-Cu(OTf) ₂	EtOH-THF (1:1)	-30°C	83	92 (>99)*

Рециклизация катализатора Ps-iPr-Box*Cu(OTf)₂ в реакции индола с диэтилбензалиденмалонатом

Цикл	1	2	3	4	5
Выход (%)	83	71	72	74	73
ee (%)	92	91	90	94	94

Асимметрическое α-аминирование альдегидов

Mendeleev Commun., 2015, 25, 410-411

Катализ иммобилизованным пролином реакции диалкилмалонатов с α,β-ненасыщенными альдегидами

 $R = H, CF_3$

Jorgensen-Hayashi organocatalyst I

Heterogenous Jorgensen-Hayashi organocatalyst II

Entry	Catalyst	Additive (mol%)	Solvent	Yield (%)	ее (ВЭЖХ) (%)
1	Catalyst I	-	EtOH	85	95
2	Catalyst II	-	EtOH	-	-
3	Catalyst II	-	CH ₂ Cl ₂	-	-
4	Catalyst II	LiOAc (20)	CH ₂ Cl ₂	-	-
5	Catalyst II	Ca(OTf) ₂ (20)	CH ₂ Cl ₂	56	85
6	Catalyst II	Ca(OTf) ₂ (100)	CH ₂ Cl ₂	62	86

 $R_1 = H$, p-OMe, p-Cl, p-NO₂, o-NO₂

28 - 99%

Катализ солями непереходных металлов

Direct C(sp²)-H phosphonation of porphyrins in meso-position

Acknowledgements

Averin A. Anokhin M. Bessmertnykh A. Bondarenko G. Cheprakov A. Kashin A. Lukashev N. Latyshev G. Kiselev A. Kotovshchikov Yu. Michalitzyna E. Mitrofanov A. Murashkina A. Selivanova A. Tyurin V. Yatshuk Yu.

Financial support: RSF, RFBR, President grant for Leading School